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As a structural entity of turbulence, hairpin vortices are believed to play a major role
in developing and sustaining the turbulence process in the near wall region of turbulent
boundary layers and may be regarded as the simplest conceptual model that can account
for the essential features of the wall pressure fluctuations. In this work we focus on fully
developed typical hairpin vortices and estimate the associated surface pressure distributions
and their corresponding spectra. On the basis of the attached eddy model, we develop a
representation of the overall surface pressure spectra in terms of the eddy size distribution.
Instantaneous wavenumber spectra and spatial correlations are readily derivable from this
representation. The model is validated by comparison of predicted wavenumber spectra
and cross-correlations with existing empirical models and experimental data.

I. Introduction

HE pressure fluctuations induced by turbulent boundary layers have long been of interest as a signifi-
Tcant factor in generating vibration, and hence radiated sound, in many practical applications in which
turbulent flow wets a flexible wall. The need to reduce the noise induced by boundary layers implies a
requirement for a simple model capable of providing reliable insights into the characteristics of the wall
pressure fluctuations.

Turbulent boundary layers exert a shear stress at the wall, and there is a strong connection between
this shear stress and the structure of turbulent flows in the vicinity of the wall. Much recent empirical and
numerical research has shown that the region of the flow with high vorticity near the wall appears as a bunch
of hairpin vortices and longitudinal tubes. Head and Bandyopadhyay' investigated a turbulent boundary
layer over a wide range of Reynolds number and observed hairpin vortices which are aligned at 45° to the
wall and convected with a uniform velocity. While these vortices are undergoing a stretching motion, they
remain straight and group together to form large scale structures, but they do not appear to be interacting
strongly with each other. In flow visualization studies, Acarlar and Smith” confirmed this feature of the
hairpin vortices.

We therefore focus attention on fully developed hairpin vortices inclined at an angle of 45° to the wall and
estimate the associated surface pressure distributions and their corresponding spectra. On the assumption
that fully developed hairpin vortices are governed by inviscid dynamics, we obtain an exact formulation for
the stagnation pressure, in terms of a Green function integral along the vortex lines. We then evaluate the
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surface static pressure by subtracting the dynamic pressure from the results of this formulation applied to
our vortex geometry.

On the basis of the attached eddy model,>* which implies that the form of the wave number spectrum
can be deduced from the properties of a single eddy, we develop the expressions needed for the surface
pressure spectra in terms of eddy number-density. This approach draws on flow visualization evidence,
which indicates that the number of eddies observed in both streamwise and spanwise directions of the flow
is inversely proportional to their size. The overall wave number spectrum consists of contributions from
eddies of all sizes, weighted by the number-density. We then validate our model against existing descriptions
and measurements of turbulent boundary layer pressures. We examine the predicted wave number spectra
and compare them with those of the Corcos and Efimtsov models®‘ and also with the results of flight test
measurements carried out by NASA, Boeing and ANTK Tupolev on the Tu-144LL supersonic aircraft.’

II. Relationship between turbulent structures and wall pressures

Many analytical approaches linking velocity and
wall pressure fluctuations in turbulent boundary lay-
ers have been proposed. One of them, for incom-
pressible fluctuations, begins with the Poisson equa-
tion®?
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The dominant contribution to the wall pres-
sure fluctuations in turbulent boundary layers comes
from Reynolds stresses, and the pressure field in-
duced by turbulent flows is obtained by solving this
equation. However, Reynolds stresses cannot be cal-
culated explicitly until the complete turbulent flow U/'
is known. The traditional approach consists of de-
termining models for Reynolds stresses based on em-
pirical statistics so that the Navier Stokes equation
can be closed. The characteristics of the wall pres- Figure 1. Schematic view of the typical hairpin vortex’s
sure fluctuations have been identified through spec- generation.
tral analysis. Significant contributions to the high
wave number pressure components are attributed to activity in the near wall region, while contributions to
the low wave number components are associated with larger structures in the outer layers.

The long-time evolution of the vorticity field above the wall is probably not deterministic in the usual
sense and may be regarded as chaotic. Nevertheless, it is clear'? that vortices are a dominant feature of
the instantaneous turbulent flow, and furthermore that some events associated with vortices are observed
to occur repeatedly. Increasingly, the importance of the coherent structures of turbulent boundary layers
and their contributions to the wall pressure fluctuations is being recognized. These features help in iden-
tifying characteristics of the surface pressures and their spectra in forming a model for the pressure field
beneath turbulent boundary layers. Hence a better understanding of the surface pressures induced by typical
turbulent structures is required.

Figure 1 presents a schematic view of the typical hairpin vortex’s generation.'%!! The initial disturbance
starts to grow and generate a shape in streamwise direction. Rapidly a vortex head develops, rises from
the wall, and bends back in the shear flow. However there is no clear explanation for its 45° orientation,
other than the fact that the maximum mean rate of strain is at 45°. As time increases, the vortex head
moves farther from the wall while the legs move progressively closer to the surface, and the streamwise
structures give way to hairpin vortices until the wake region where the structures are predominantly hairpin-

Vip=—p Viscous sublayer

Subsidiary vortex

Initial distortion
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like. The original disturbance spreads laterally and produces subsidiary vortices. The development of the
subsidiary vortices allows the original disturbance to multiply and spread in the spanwise direction through
an interaction with the background shear flow. The distance between the vortex legs (\) depends on the
level of the background shear flow.

ITI. Numerical formulation

Here we derive the equations for determining the
surface pressure field induced by the hairpin vortex,
which is regarded as two symmetric thin vortex lines
inclined at 45° to the wall joined by a horizontal
head (see Figure 2). In order to satisfies the wall
boundary condition image vortex lines are placed
symmetrically beneath them. A suitable cut-off dis-
tance (c) is adopted to avoid the singularity in the
self-induction integral.'> Smith and Metzler'® have
suggested that the typical vortex has a core diam-
eter of about 30v/u, and the spacing of the vortex
pair is 100v/u, over a range of Reynolds numbers
in the near-wall regions. Crow'? has shown the re-
lation between the cut-off distance (¢) and vortex
core diameter (d) is ¢/d ~ 1/3. The cut-off distance
is thus taken as proportional to the vortex core di-
ameter which is also proportional to the distance Figure 2. Configuration for the hairpin vortex model.
between the two legs.

We follow the numerical formulation derived by
Dhanak and Dowling'* for the surface pressure induced due to a developing horse-shoe shaped vortex. By
using the vector identity, (u - V)u = V(3u - u) — u X w, and introducing the stagnation pressure, p(z,t) =
P+ 2plu|?, the momentum equation may be written in the form

0
p(a—% +wxu) =-Vp+puViu (2)
The normal component of the momentum equation should satisfy the rigid wall boundary condition:
0
8_1; = TP@xu); +pViu; >0 (3)

Taking the divergence of each term in Eq. (2) and using the continuity equation (V -4 = 0) for an incom-
pressible flow, a Poisson equation for the stagnation pressure can be obtained:

Vip=—pV-(wxu) (4)
The solution of the Poisson equation can be determined in terms of the Green function

1 1 1.1 1
_ _ — (4= 5
dr|§ —z| 4wl — 2| 47r(r+r') ()

G(flz) =

where z' is the image point of z, and G(&|z) satisfies

ViG =6§(§ - z) (6)
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with aga =0on & = 0and G(|§ —z[) = 0 as [{| = co. By using Green’s theorem and these boundary
conditions, the stagnation pressure is written in terms of a volume integral over the region in which the
vorticity is nonzero, and a surface integral due to viscous effects.

:/YQG@@-ng@f§+/uGV%w&%2 (7)
1% S

If one assumes that the fully developed hairpin vortex is governed by inviscid dynamics, then the equation
for the stagnation pressure may be simplified further, such that without viscous terms:

pz) = p /V VeG(Elz) - (w x w)d (8)

IV. Application of the attached eddy model to the surface pressure spectra

In experimental and theoretical works,
Perry et al®* showed that an isolated
hairpin vortex undergoes a stretching
motion in which the vortex height L in-
creases uniformly with time and the dis-
tance A between the two legs of the hair-
pin vortex at the wall decreases such that
the product AL remains constant. They

also showed a geometrically similar ran- 45
dom array of hairpin vortices exists in z z
the turbulent wall region and all eddy ar- y X

rays have the same velocity scale (~ u;).

They applied the observation that the Figure 3. Schematic representation of eddy size distribution in
only velocity scale in the log-law region spanwise and streamwise directions.

is u,, the friction velocity, to each indi-

vidual eddy. Thus the typical hairpin vortex, with length scale X, has vorticity w ~ u,A~! and circulation
T'~u A

Flow visualisation work that they cite indicates that the number of eddies observed in both streamwise
(x) and spanwise (y) directions decreases like A\~! (see Figure 3). This implies that the number of eddies per
unit area around a scale A should be four times that around the scale 2), and this requirement is fulfilled
by the eddy number density n(\) = NA~3, with N constant. The physical interpretation of the increase in
circulation with size is linked to the A\~! distribution of eddies in the streamwise direction, which implies
combination as they evolve and grow.

The key point in deriving spectra from the attached eddy model is that the eddies are uncorrelated (on
average). This implies that the form of a spectrum can be deduced from the properties of a single eddy.
This approach is applied to velocity auto and cross-spectra by Perry et al, but it can be equally well used
for pressure spectra. Here, we develop an alternative approach, in terms of eddy number density, to obtain
expressions needed for the surface pressure spectra. The spectrum is defined by

S(ka, ky) / / R(&,m)e k= e~k dgdy (9)
with the ensemble average of the surface pressure(p),
R(&,n) = p(z,y)p(z + &,y +n) (10)
It can be related to the Fourier transform of the pressure field,
P(ky, ky) / / p(z,y)e” %= e~ dedy (11)
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via generalized function theory, with the result that

(27)28(ky + k2 )0 (ky + Fy)S(ka, ky) = P(ky, ky) P(ky, ky) (12)

We write the pressure field arising from all eddies,

Y) =Y pe(® — Te,y — Yo, N) (13)
N,

where (z.,ye) is the eddy location. The Fourier transform is thus

P(ky, ky) = Zpe(kw,ky,)\)e—z’kmzee—ikyye (14)

Ne

where N, is the number of eddies and P.(k,,ky, ) is the Fourier transform of the pressure field due to an
individual eddy, and Eq. (12) becomes

(2m)28(ky + ku)O(ky + ky)S(ky, ky) ZP (kg ky, N Po (o, oy N)em ke the)ze =ity thy)ue (15

Note that the ensemble average has removed all terms involving contributions from different eddies. Then
the summation is replaced with an integral over eddy location and scale, giving

(27r)26(k + Ep)8(ky + ky)S kg, ky)
= P, (g, ky NPy (kg , ky N e~ #kethe) e gilhythy)ve g dy,dX 16
/\ Y

Here A, is the scale of the smallest eddy (around 1001// ur), and ¢ the boundary layer thickness which is the
scale of the largest eddy. Integration over k, and k now yields

S(ky, ky) = /6 n(A) | Pe(ks, ky, A) > dX (17)

m

In the same way, the streamwise and spanwise spectrum are respectively expressed as follow:

J %)
(koyy) = A / () | Pulka,y, ) [? dydA (18)
/ / Pu(w, by, \) |? dd) (19)

V. Non-dimensionalisation and the ‘universal’ spectrum

The surface pressure due to the eddy is a function of the fluid density p, the vortex strength I, the eddy
core size d, the length scale A, and the location z,y; that is,

De = f(parada)‘;may) (20)

We investigated the dependence of the pressure field on the eddy core size and found that it is weak. The
non-dimensional surface pressure may then be expressed as

Pelp, T\ 2,0) = 2 p(3) Pl /A /N (1)

5 of 12

American Institute of Aeronautics and Astronautics



As only the variation in z, y and X is of interest, the dependence on other variables will be suppressed. The
nondimensional streamwise wavenumber spectrum is

1. - .
Pe(kzakya/\) = 5 TP (k ky) (22)

where k, = \k,, ky, = Mk, & = /), § = y/\ and
P, (kg, ky) / / P.(3, )" k=T e~ kT gz djj. (23)

Substitution into Eq. (17) with the scaling T’ ~ u,\ yields
. L Lo 5o 0 5L LN 12
S(kerky) = (5pu2)” [ NoX| Bulls, ) [P dX (24)
Am

Finally, one usually wishes to consider the spectrum in non-dimensionalised form. Equation (24) can be
manipulated to provide the required expression:

S(ky, ky)

T = / N& | (Ao, A, [2 di (25)
2

where k, = 0k,, k, = 0k, and A = A/d. Firstly we evaluate the ‘universal’ spectrum
SNz, Aky) =| Pe(Nea, Mey) | (26)

for a range of values of the arguments Ak;, Ak,, and store this in a look-up table. By using a suitable
quadrature, we then evaluate Eq. (25). Here, whenever the integrand is required for a given value of 5\,
we have \k = 5\12‘, hence defining the argument of the ‘universal’ spectrum and therefore the appropriate
look-up table location. With the same procedure, the non-dimensional streamwise and spanwise wavenumber
spectrum are respectively expressed as follows:

% [N Pk dia (27)
(2pu2 25 / / N, | P.(2,\k,) |* dzd\ (28)
In these cases, the ‘universal’ spectra are respectively defined by
SOk = [ 1.0k, g (29)
and -~
S(\ky) = /_ I B0k, | (30)

VI. Wavenumber spectrum model

On the basis of the Corcos® and Efimtsov models,® we derive an expression for the wavenumber spectrum,
evaluate its value and compare with our results. The Corcos model for the spatial correlation between two
pressures separated by (£,7) in (z,y) is

S(€,m,w) = q)(w)e[—az |w€|/Uec—ay|wn|/Uec+iwg /U] (31)
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where o, and a, are parameters chosen to yield the best agreement with experiment and ®(w) is the point
pressure spectrum. The Efimtsov model considers the dependence of spatial correlation on the boundary
layer thickness (8), as well as the streamwise (£) and spanwise (n) spatial separation and it is obtained by
replacing a, and ay in Eq. (31) by U,/ |w | A, and U/ | w | Ay respectively. The correlation scales A, and
Ay are

—1/2
A, a1Sh \2 a’
A _ 2
5 (UC/UT) T Sh T (as/as)? (32)
2 “1/2
% = [(%) +a2] for M 209 (33)
asSh \2 a? -1/2
= <0.
KUC/UT) + g (a5/a6)2] for M < 0.75,

where M is the Mach number, and Sh = wd/u,. The average values of the empirical constants, a;.7, are
0.1, 0.728, 1.54, 0.77, 548 and 13.5 respectively. We seek to relate the streamwise and spanwise wavenumber
spectrum to the frequency spectrum:

S(ky) = % /_ o:o /_ : S(€,0,w)e” k=L dedw (34)
S(ky) = % /(: /(: 5(0,n,w)e” *udndw (35)
The Corcos and Efimtsov models give:
ste) = 1 [ 2 o 9
S(ky) = % /_ O:o @(w)%m (37)

Efimtsov® gives the frequency spectrum as a function of the Strouhal number (Sh), which was approximated
by the flight-test results,
)
B(w) = (_) £0.017[1 + 0.02(Sh)?/3 1 (38)
Uy
and the relation p,,,s = 3.47" then implies an upper frequency limit corresponding to Sh = 3980 in Eq. (36)
and (37).

VII. Results and Discussions

Figure 4 on page 10 illustrates the surface pressure contours of p. in Eq. (21) due to the different eddy
core sizes, and it shows that the dependence of the pressure field on the eddy core size is sufficiently weak
that the non-dimensionalised surface pressure can be represented without its contribution. In figure 5 on
page 11 streamwise and spanwise pressure spectra and their corresponding universal spectra are shown. On
the basis of the attached eddy model, the streamwise and spanwise wavenumber spectrum for the whole scale
of eddies are evaluated and compared with the Efimtsov model in Figure 6 on page 12. There have been
arguments for the spectrum shape, -1 and -5 slope,” '® but its physical explanation is not yet clear. Perry
et al* suggest that there is a range of wavenumbers where the streamwise velocity spectrum ®(k) at a given
height z depends on the mean wall shear velocity (u,), wave number (k), eddy scale (§) and height (z), but
not viscosity. Furthermore, at the low end of this range, the velocity fluctuations are associated with eddies

of scale much greater than z, and so
B(k) = bu2gy (kd) (39)
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where g; is a dimensionless function. Conversely, at the higher end of the range one would expect eddies of
scale O(z) to contribute, and that this contribution should be independent of §. This implies

B(k) = zuZgs(k2) (40)
If we now postulate an ‘overlap region’ where both of these forms hold, then

g1(kd) =z
ga(kz) § (41)

implying that g1(kd) ~ (kd)~ !, ga(kz) ~ (kz)~1, and hence that ®(k) ~ k! in this region. Perry et al’s
experiment supports this feature. It is hard to see how these arguments could be applied directly to the wall
pressures, as there is no height variable z present. However, the other length scale on which the wavenumber

spectrum clearly depends is A,,, the smallest eddy scale, and one could perhaps argue for dependencies of
the form

S(k) = (1/2pu3)*3g.(kd) (42)

and
S(k) = (1/2pu3)2)\mg2(k)\m) (43)

at low and high wavenumbers respectively, in which case any overlap region would have -1 slope. In any
case, the current model clearly predicts a region of -1 slope in both spectra, whereas this is absent from the
streamwise Efimtsov spectrum. None of the spectra exhibit a distinct region of -5 slope. Figure 7 (a) on page
12 shows the spatial correlations obtained by inverse Fourier transform compared with the results of flight
test measurements carried out by NASA, Boeing and ANTK Tupolev on the Tu-144LL supersonic aircraft.”
Here the spatial separations are normalised by different boundary layer thicknesses: the one marked ‘US’
is used by Boeing (§ = 0.49 m) and the others marked ‘Russia’ by the Tupolev (§ = 0.30 m) for the same
experimental conditions (distance from aircraft nose = 49.3 m, M = 0.74). The predicted correlations agree
well with the Tupolev result. Finally, 2-dimensional universal spectrum is provided in Figure 7 (b) on page
12.

VIII. Conclusion

The present hairpin vortex model shows that it is capable of predicting the properties of the wall pressure
field, and is therefore a promising candidate for use in exploring features less readily obtainable by other
methods, eg off-axis correlations. Additional comparisons of streamwise and spanwise wavenumber spectra
and correlations are presently being made to improve the model. Use of the model for oblique pressure
correlations will also be investigated.
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Figure 4. Surface pressure contours according to different eddy core sizes: (a) d=104ul, (b) d=10%-2, (c)
d=102% and (d) d=10%.
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Figure 5. (a) Streamwise, (b) spanwise surface pressure spectra and their universal spectra (c) and (d)
respectively.
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Figure 6. (a) Streamwise and (b) spanwise wavenumber spectra.
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Figure 7. (a) Spatial correlations and (b) Stream-spanwise universal spectrum.
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